Amateur

Community

Join

Europlanet Society

Scientific

Conferences

Facilities

Ground Based Telescopes

Professional

Community

Industry

& Stakeholders

Networking

Hub Activities

Space

Exploration

Outreach

Activities

Members

Europlanet Society


Tytle: Postdoctoral position on Uranus and Neptune atmospheric modeling

Center: Laboratoire de Météorologie Dynamique (LMD), Sorbonne Université, Paris, France

Type: Postdoctoral

Description:

The Laboratoire de Météorologie Dynamique (LMD), located on Sorbonne Université (Paris, France), invites applications for a postdoctoral position on Uranus and Neptune atmospheric modeling. The position is funded by the ANR (Agence Nationale pour la Recherche) grant “Simulations and Observations of Uranus and Neptune atmospheric Dynamics (SOUND)”. The SOUND project addresses fundamental questions regarding the atmospheric physics of Uranus and Neptune, in particular i) atmospheric circulation (waves, jets, ...), storm activity and the methane cycle using circulation models at the global scale or at the regional scale and ii) characterizing stratospheric winds and temperatures from observations. This first aspect is the main topic of the postdoctoral position.

We are looking for a someone to contribute to the development of the Uranus and Neptune version of our Generic Planetary Circulation Model (PCM), a 3D versatile model developed at LMD in strong collaboration with other laboratories (LAB, LESIA...). The ice giant version of the PCM, based on our Saturn and Jupiter models [Spiga et al., 2020, Guerlet et al., 2020] is already operational but needs further developments. Depending on the candidate’s background and interests, several areas can be explored: add methane clouds and haze microphysics ; test a gravity wave parametrization and study its impact on stratospheric thermal structure and dynamics ; or account for convective plumes and study their impact on the general circulation. The candidate will rely on existing modules available within our team or collaborations (eg. adapting the Titan cloud and haze microphysics to Uranus; or the Mars and Saturn gravity wave  parametrization to Neptune; etc.). Access to several hundred thousands of computing hours on a national facility has already been secured. The candidate can also count on in-house developed tools to analyze the GCM outputs, for instance related to spectral decomposition of wave modes, or the study of wave-mean zonal flow interactions. Comparisons with observations (including recent ones by the JWST, or with ALMA) will be done to validate and interpret the model results.

The applicant will join the “Planeto” team at LMD, composed of six permanent researchers and a dozen of engineers, postdocs and PhDs working on all solar system atmospheres and  exoplanet ones, both on modeling and observational aspects. Within the SOUND project, the candidate will also collaborate closely with teams at the Laboratoire d’Astrophysique de Bordeaux and the LESIA at the Observatory of Paris. Diversity, work ethics and good work/personal life balance are important values shared by our collaborators. There are possibilities to practice sport for free or take French classes on the university campus. You are enthusiastic, curious, you work with rigor, and, while you are autonomous, you are also a team player with good interpersonal communication skills: join our team! 

Applicants should have a PhD in planetary science, atmospheric physics or astrophysics.  Experience conducting research on (giant) planet atmospheres ; atmospheric modeling ; good programming skills (eg. fortran, python, ...); experience with collaborative tools (Git / svn) and good English level are among the desirable assets for the position. 

The postdoctoral position is awarded for 18 months (plus a potential 6 month extension), starting ideally in spring 2023 (the 1st of April, May or June), with some flexibility. Applications received until 31 January, 2023 will receive full consideration. Applicants should send a CV (including publication list), a cover letter stating their research accomplishments, interests in the project and date of availability, and 1 to 3 contact information for references to Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo..


 


Title: INPHINIT PHD FELLOWSHIP: Computer science applied to the minor bodies in the solar system

Center: Instituto de Astrofísica de Andalucía

Type: Predoctoral

Description:

The doctoral fellowship programme INPhINIT ”la Caixa” is devoted to attracting talented Early-Stage Researchers of any nationality to pursue their PhD studies in the best Spanish and Portuguese research centres and units with excellence distinction.

Research Project / Research Group Description

Historically the study of the physical properties of minor bodies in our solar system was done doing planned ground-based and space observations.Telescopes likes Hubble, Spitzer, Wise or Herschel were used. Then, most recently, large ground-based and space-based stars and/or galaxies surveys were planned with diverse objectives but were used by the minor bodies community to study the background minor bodies. That means, the telescope was pointing to a field of view to study some galaxy, star cluster or specific star and diverse minor bodies can be identified and studied in that pointing. The first large data release of minor bodies published using this technique was the Sloan Digital Sky Survey (SDSS) Moving Object Catalog. The catalog lists astrometric and photometric data for moving objects observed during the Survey. The advantage of these kind of data is that there are ready to use in the databases where the survey’s team applied the pipeline to extract the data from the observations. Other current examples of this kind of catalogues are: Wise, K2, Tess, Gaia and in a near future the LSST. Another huge source of data are the ground-based observations, where again, are planned with diverse objectives and a minor body can be found in the background. We want to extract the information on these minor bodies that appears on the images that were not planned to observe these bodies. We will use all the databases of minor bodie´s observations from the last 20 years, together with the observations made by our group, and extract as much information as possible. The challenge in analyzing the data lies in the heterogeneity of the data, the different observing conditions, formats, and timing of the data. The project aims to use data analysis tools to interpret the physical properties of these minor bodies observed in such different conditions and times. The developed tools can be used in the analysis of other databases in the future.


 


Title: Massive navigation of planetary images from the PVOL database

Center: Universidad del País Vasco

Type: Postdoctoral

Description:

The Planetary Sciences Group at UPV/EHU in Bilbao, Spain, offers a short post-doc position of 10 months (extendable) to work with amateur images of Solar System planets in the PVOL database at http://pvol.ehu.eus. The contract is funded by the Europlanet 2024 Research Infraestructure as part of its VESPA activities.

The goal of the project is to develop a system to massively map in a semi-interactive way selected ground-based images of the planets, with the main target being Jupiter. These maps will be uploaded into the PVOL database and will be used to investigate changes in the atmospheres of the planet. While most of the work will be technical, science objectives will be linked to: (1) analysis of zonal winds and atmospheric changes on different time-scales; (2) improvement of spatial resolution by combining information of different maps from different observers. In addition, movies of the maps will show the planet’s dynamic atmosphere for outreach purposes.

The candidate will work with Artificial Intelligence techniques to identify the planet’s limb on the image files and fit an ellipse to the planet. Navigation will be provided by using the SPICE system. Formal training on SPICE will be given at the host institution. Most technical challenges will be related to pattern recognition (identifying the planet position and orientation on PVOL images).

Interested candidates should write to Ricardo Hueso (e-mail: Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.).